Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 213: 738-750, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35690157

RESUMO

In this work, platinum nanoparticles (PtNPs) were synthesized by a modified polyol process using TEMPO-oxidized nanocellulose (TOCN) as a stabilizing and co-reducing agent. Different ratios of TOCN nanocellulose to Pt4+ ions were studied to establish the optimum stabilizing effect of PtNPs. The effect of different pH of aqueous TOCN suspensions on the morphology of PtNPs was also examined. It was proved that PtNPs can be obtained solely in the presence of TOCN without the use of an additional reducing agent or ethylene glycol. The morphology and structural properties of the nanocellulose­platinum nanoparticles composites were assessed using spectroscopic, microscopic and diffraction techniques, The catalytic performance in 4-nitrophenol reduction was evaluated. Significant differences in reaction rate constants k were found depending on the pH of the TOCN suspension applied during Pt4+ reduction. The crucial effect of reaction conditions on PtNPs performance was confirmed in tests of antibacterial efficacy against E. coli.


Assuntos
Celulose Oxidada , Nanopartículas Metálicas , Antibacterianos/farmacologia , Celulose Oxidada/química , Óxidos N-Cíclicos , Escherichia coli , Nanopartículas Metálicas/química , Platina/química , Substâncias Redutoras
2.
Environ Microbiol ; 23(8): 4200-4213, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998121

RESUMO

Climate change is projected to cause increased inflow of terrestrial dissolved organic matter to coastal areas in northerly regions. Estuarine bacterial community will thereby receive larger loads of organic matter and inorganic nutrients available for microbial metabolism. The composition of the bacterial community and its ecological functions may thus be affected. We studied the responses of bacterial community to inflow of terrestrial dissolved organic matter in a subarctic estuary in the northern Baltic Sea, using a 16S rRNA gene metabarcoding approach. Betaproteobacteria dominated during the spring river flush, constituting ~ 60% of the bacterial community. Bacterial diversity increased as the runoff decreased during summer, when Verrucomicrobia, Betaproteobacteria, Bacteroidetes, Gammaproteobacteria and Planctomycetes dominated the community. Network analysis revealed that a larger number of associations between bacterial populations occurred during the summer than in spring. Betaproteobacteria and Bacteroidetes populations appeared to display similar correlations to environmental factors. In spring, freshly discharged organic matter favoured specialists, while in summer a mix of autochthonous and terrestrial organic matter promoted the development of generalists. Our study indicates that increased inflows of terrestrial organic matter-loaded freshwater to coastal areas would promote specialist bacteria, which in turn might enhance the transformation of terrestrial organic matter in estuarine environments.


Assuntos
Estuários , Bactérias/genética , RNA Ribossômico 16S/genética
3.
Materials (Basel) ; 14(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918400

RESUMO

Aluminum oxide is one of the most commonly used materials in the industry. It is used in the field of catalysis, refractories, and optics. Despite the fact that there are many techniques available, there is still a great challenge in obtaining a material with desired and designed properties. Nevertheless, there is a great flexibility in making customized alumina materials with desired physicochemical properties synthesized by sol-gel methods. This work consists in characterizing the physicochemical properties of sol-gel synthesized aluminum oxide using different sol-gel preparation routes. Three different sols were obtained by using organic precursors and underwent thermal treatment. The structure (Middle Infrared Spectroscopy, Diffused Reflectance Infrared Spectroscopy, X-ray Diffraction, Magic Angle Spinning Nuclear Magnetic Resonance) and microstructure (Scanning Electron Microscopy with Electron Dispersive Spectroscopy) tests of the materials were carried out. The specific surface area was determined by using the Brunauer-Emmett-Teller (BET) method. Thermal analysis was performed for all the powders, in order to analyze the specific temperature of materials transformation.

4.
Polymers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810293

RESUMO

The degradation of cellulose is an important factor influencing its mechanical, optical, physical, and chemical properties and, hence, the lifetime of paper in libraries and archival collections. Regardless of the complexity of the paper material, the main chemical pathways for its degradation are hydrolysis and oxidation. This study presents an overview of the analytical techniques employed in the evaluation of the hydrolysis and oxidation processes; these techniques include size-exclusion chromatography, Fourier-transform infrared and ultraviolet-visible spectroscopy, and X-ray diffraction. This paper aims to determine the extent to which these instrumental methods are useful for studying the aforementioned processes and for which lignin contents. It also highlights how atmospheric humidity could affect the cellulose structure in paper containing lignin. It was found that humidity causes significant changes in the cellulose chain lengths and that a high lignin content in paper could suppress some cellulose degradation pathways. This knowledge can be applied to developing strategies and selective chemical treatments preventing the consequences of paper ageing.

5.
Mar Environ Res ; 151: 104778, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31488340

RESUMO

The influence of nutrient availability and light conditions on phytoplankton size-structure, nutritional strategy and production was studied in a phosphorus-poor estuary in the northern Baltic Sea receiving humic-rich river water. The relative biomass of mixotrophic nanophytoplankton peaked in spring when heterotrophic bacterial production was high, while autotrophic microphytoplankton had their maximum in summer when primary production displayed highest values. Limiting substance (phosphorus) only showed small temporal variations, and the day light was at saturating levels all through the study period. We also investigated if the phytoplankton taxonomic richness influences the production. Structural equation modelling indicated that an increase of the taxonomic richness during the warm summer combined with slightly higher phosphorus concentration lead to increased resource use efficiency, which in turn caused higher phytoplankton biomass and primary production. Our results suggest that climate warming would lead to higher primary production in northerly shallow coastal areas, which are influenced by humic-rich river run-off from un-disturbed terrestrial systems.


Assuntos
Estuários , Nutrientes , Fitoplâncton , Biomassa , Rios , Água do Mar
6.
Sci Total Environ ; 634: 1352-1361, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29710635

RESUMO

We evaluated the dual role of DOM (i.e., as a source of inorganic nutrients and as an absorber of solar radiation) on a phytoplankton community of the western South Atlantic Ocean. Using a combination of microcosms and a cluster approach, we simulated the future conditions of some variables that are highly influenced by global change in the region. We increased nutrients (i.e., anthropogenic input) and dissolved organic matter (DOM), and we decreased the pH, to assess their combined impact on growth rates (µ), species composition/abundance and size structure, and photosynthesis (considering in this later also the effects of light quality i.e., with and without ultraviolet radiation). We simulated two Future conditions (Fut) where nutrients and pH were similarly manipulated, but in one the physical role of DOM (Futout) was assessed whereas in the other (Futin) the physico-chemical role was evaluated; these conditions were compared with a control (Present condition, Pres). The µ significantly increased in both Fut conditions as compared to the Pres, probably due to the nutrient addition and acidification in the former. The highest µ were observed in the Futout, due to the growth of nanoplanktonic flagellates and diatoms. Cells in the Futin were photosynthetically less efficient as compared to those of the Futout and Pres, but these physiological differences, also between samples with or without solar UVR observed at the beginning of the experiment, decreased with time hinting for an acclimation process. The knowledge of the relative importance of both roles of DOM is especially important for coastal areas that are expected to receive higher inputs and will be more acidified in the future.

7.
Mar Environ Res ; 129: 236-244, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28645656

RESUMO

Climate change predictions indicate that coastal and estuarine environments will receive increased terrestrial runoff via increased river discharge. This discharge transports allochthonous material, containing bioavailable nutrients and light attenuating matter. Since light and nutrients are important drivers of basal production, their relative and absolute availability have important consequences for the base of the aquatic food web, with potential ramifications for higher trophic levels. Here, we investigated the effects of shifts in terrestrial organic matter and light availability on basal producers and their grazers. In twelve Baltic Sea mesocosms, we simulated the effects of increased river runoff alone and in combination. We manipulated light (clear/shade) and carbon (added/not added) in a fully factorial design, with three replicates. We assessed microzooplankton grazing preferences in each treatment to assess whether increased terrestrial organic matter input would: (1) decrease the phytoplankton to bacterial biomass ratio, (2) shift microzooplankton diet from phytoplankton to bacteria, and (3) affect microzooplankton biomass. We found that carbon addition, but not reduced light levels per se resulted in lower phytoplankton to bacteria biomass ratios. Microzooplankton generally showed a strong feeding preference for phytoplankton over bacteria, but, in carbon-amended mesocosms which favored bacteria, microzooplankton shifted their diet towards bacteria. Furthermore, low total prey availability corresponded with low microzooplankton biomass and the highest bacteria/phytoplankton ratio. Overall our results suggest that in shallow coastal waters, modified with allochthonous matter from river discharge, light attenuation may be inconsequential for the basal producer balance, whereas increased allochthonous carbon, especially if readily bioavailable, favors bacteria over phytoplankton. We conclude that climate change induced shifts at the base of the food web may alter energy mobilization to and the biomass of microzooplankton grazers.


Assuntos
Carbono/metabolismo , Ecossistema , Monitoramento Ambiental , Cadeia Alimentar , Bactérias , Biomassa , Mudança Climática , Eutrofização , Fitoplâncton/metabolismo , Rios
8.
Ambio ; 44 Suppl 3: 345-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26022318

RESUMO

Climate change is likely to have large effects on the Baltic Sea ecosystem. Simulations indicate 2-4 °C warming and 50-80 % decrease in ice cover by 2100. Precipitation may increase ~30 % in the north, causing increased land runoff of allochthonous organic matter (AOM) and organic pollutants and decreased salinity. Coupled physical-biogeochemical models indicate that, in the south, bottom-water anoxia may spread, reducing cod recruitment and increasing sediment phosphorus release, thus promoting cyanobacterial blooms. In the north, heterotrophic bacteria will be favored by AOM, while phytoplankton production may be reduced. Extra trophic levels in the food web may increase energy losses and consequently reduce fish production. Future management of the Baltic Sea must consider the effects of climate change on the ecosystem dynamics and functions, as well as the effects of anthropogenic nutrient and pollutant load. Monitoring should have a holistic approach, encompassing both autotrophic (phytoplankton) and heterotrophic (e.g., bacterial) processes.


Assuntos
Mudança Climática , Ecossistema , Fitoplâncton
9.
Environ Sci Technol ; 49(3): 1445-52, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25581499

RESUMO

Regional climate change scenarios predict increased temperature and precipitation in the northern Baltic Sea, leading to a greater runoff of fresh water and terrestrial dissolved organic carbon (DOC) within the second part of the 21st century. As a result, the current north to south gradient in temperature and salinity is likely to be shifted further toward the south. To examine if such climate change effects would cause alterations in the environmental fate of organic pollutants, spatial variations of DOC quality and sorption behavior toward organic contaminants were examined using multiple analytical methods. The results showed declining contents of aromatic functional groups in DOC along a north to south gradient. Similarly, the sorption of a diverse set of organic contaminants to DOC also showed spatial differences. The sorption behavior of these contaminants was modeled using poly parameter linear energy relationships. The resulting molecular descriptors indicated clear differences in the sorption properties of DOC sampled in northern and southern parts of the Baltic Sea, which imply that more organic contaminants are sorbed to DOC in the northern part. The extent of this sorption process determines whether individual contaminants will partition to biota via direct uptake or through sorption to DOC, which serves as food source for bacteria-based food-webs.


Assuntos
Carbono/química , Mudança Climática , Compostos Orgânicos/química , Poluentes Químicos da Água/química , Adsorção , Oceanos e Mares , Salinidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...